Systematic Search for Evidence of Interdomain Horizontal Gene Transfer from Prokaryotes to Oomycete Lineages
نویسندگان
چکیده
While most commonly associated with prokaryotes, horizontal gene transfer (HGT) can also have a significant influence on the evolution of microscopic eukaryotes. Systematic analysis of HGT in the genomes of the oomycetes, filamentous eukaryotic microorganisms in the Stramenopiles-Alveolates-Rhizaria (SAR) supergroup, has to date focused mainly on intradomain transfer events between oomycetes and fungi. Using systematic whole-genome analysis followed by phylogenetic reconstruction, we have investigated the extent of interdomain HGT between bacteria and plant-pathogenic oomycetes. We report five putative instances of HGT from bacteria into the oomycetes. Two transfers were found in Phytophthora species, including one unique to the cucurbit pathogen Phytophthora capsici. Two were found in Pythium species only, and the final transfer event was present in Phytopythium and Pythium species, the first reported bacterium-inherited genes in these genera. Our putative transfers included one protein that appears to be a member of the Pythium secretome, metabolic proteins, and enzymes that could potentially break down xenobiotics within the cell. Our findings complement both previous reports of bacterial genes in oomycete and SAR genomes and the growing body of evidence suggesting that interdomain transfer from prokaryotes into eukaryotes occurs more frequently than previously thought. IMPORTANCE Horizontal gene transfer (HGT) is the nonvertical inheritance of genetic material by transfer between different species. HGT is an important evolutionary mechanism for prokaryotes and in some cases is responsible for the spread of antibiotic resistance from resistant to benign species. Genome analysis has shown that examples of HGT are not as frequent in eukaryotes, but when they do occur they may have important evolutionary consequences. For example, the acquisition of fungal genes by an ancestral Phytophthora (plant destroyer) species is responsible for the large repertoire of enzymes in the plant-degrading arsenal of modern-day Phytophthora species. In this analysis, we set out to systematically search oomycete genomes for evidence of interdomain HGT (transfer of bacterial genes into oomycete species). Our results show that interdomain HGT is rare in oomycetes but has occurred. We located five well-supported examples, including one that could potentially break down xenobiotics within the cell.
منابع مشابه
Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist.
While there is compelling evidence for the impact of endosymbiotic gene transfer (EGT; transfer from either mitochondrion or chloroplast to the nucleus) on genome evolution in eukaryotes, the role of interdomain transfer from bacteria and/or archaea (i.e. prokaryotes) is less clear. Lateral gene transfers (LGTs) have been argued to be potential sources of phylogenetic information, particularly ...
متن کاملAssessing the effects of a sequestered germline on interdomain lateral gene transfer in Metazoa.
A sequestered germline in Metazoa has been argued to be an obstacle to lateral gene transfer (LGT), though few studies have specifically assessed this claim. Here, we test the hypothesis that the origin of a sequestered germline reduced LGT events in Bilateria (i.e., triploblast lineages) as compared to early-diverging Metazoa (i.e., Ctenophora, Cnidaria, Porifera, and Placozoa). We analyze sin...
متن کاملThe Secreted Proteins of Achlya hypogyna and Thraustotheca clavata Identify the Ancestral Oomycete Secretome and Reveal Gene Acquisitions by Horizontal Gene Transfer
Saprotrophic and parasitic microorganisms secrete proteins into the environment to breakdown macromolecules and obtain nutrients. The molecules secreted are collectively termed the "secretome" and the composition and function of this set of proteins varies depending on the ecology, life cycle, and environment of an organism. Beyond the function of nutrient acquisition, parasitic lineages must a...
متن کاملHorizontal Transfer, Not Duplication, Drives the Expansion of Protein Families in Prokaryotes
Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We a...
متن کاملShu¥inggenesaround in hot environments: theuniqueDNA transporterof Thermusthermophilus
Natural transformation permits the transport of DNA through bacterial membranes and represents a dominant mode for the transfer of genetic information between bacteria and between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal, or lateral, gene transfer, has been a major force for genome plasticity over evoluti...
متن کامل